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Abstract 

 

Let 𝑀  be a prime Γ-ring satisfying a certain assumption and 𝐷  a nonzero 

derivation on M. Let 𝑓: 𝑀 → 𝑀 be a generalized Jordan derivation such that  𝑓  is 

centralizing and commuting on a left ideal 𝐽  of 𝑀 . Then we prove that 𝑀 is 

commutative. 
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Introduction 
 

The concept of a Γ-ring was first introduced by Nobusawa [13] and also shown 

that Γ-rings, more general than rings. Bernes [1] weakened slightly the conditions 

in the definition of Γ -ring in the sense of Nobusawa. Bresar [2] studied 

centralizing mappings and derivations in prime rings. Kyuno [9] , Luh [10], [11], 

Hoque and Paul [5], [6] and others were obtained a large numbers of important 

basic properties of Γ-rings in various ways and determined some more remarkable 

results of Γ-rings. Ceven [3] studied on Jordan left derivations on completely 

prime Γ-rings. Mayne [12] have developed some remarkable result on prime rings 

with commuting and centralizing. Jaya Subba Reddy et.al [8] studied centralizing 

and commutating left generalized derivation on prime ring is commutative. Hoque 

and  Paul  [7]  studied  prime  gamma  rings  with  centralizing  and  commuting  
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generalized derivations is a commutative. In this paper, following [7], we 

extended some results on prime gamma rings with centralizing and commuting 

generalized Jordan derivations. 

 

Let 𝑀 and Γ be additive abelian groups. If there exists a mapping (𝑥, 𝛼, 𝑦) → 𝑥𝛼𝑦 

of 𝑀 × Γ × 𝑀 → 𝑀, which satisfies the conditions 

(i) 𝑥𝛼𝑦 ∈ 𝑀 

(ii) (𝑥 + 𝑦)𝛼𝑧 = 𝑥𝛼𝑧 + 𝑦𝛼𝑧, 𝑥(𝛼 + 𝛽)𝑧 = 𝑥𝛼𝑧 + 𝑥𝛽𝑧, 𝑥𝛼(𝑦 + 𝑧) = 𝑥𝛼𝑦 + 𝑥𝛼𝑧 

(iii) (𝑥𝛼𝑦)𝛽𝑧 = 𝑥𝛼(𝑦𝛽𝑧) for all 𝑥, 𝑦, 𝑧 ∈ 𝑀 and 𝛼, 𝛽 ∈ Γ, then 𝑀  is called a Γ-

ring. 

Every ring 𝑀 is a Γ-ring with 𝑀 = Γ. However a Γ-ring need not be a ring. Let 𝑀 

be a Γ-ring. Then an additive subgroup 𝑈 of 𝑀 is called a left (right) ideal of 𝑀 if  

𝑀Γ𝑈 ⊂ 𝑈(𝑈Γ𝑀 ⊂ 𝑈).  

If 𝑈 is both a left and a right ideal, then we say 𝑈 is an ideal of 𝑀. Suppose again 

that 𝑀 is a Γ-ring. Then 𝑀 is said to be a 2-torsion free if 2𝑥 = 0 implies 𝑥 = 0 

for all 𝑥 ∈ 𝑀. An ideal  𝑃1 of a Γ-ring 𝑀  is said to be prime if for any ideals 𝐴 

and 𝐵 of 𝑀 , 𝐴Γ𝐵 ⊆ 𝑃1  implies 𝐴 ⊆ 𝑃1  or 𝐵 ⊆ 𝑃1 . An ideal 𝑃2  of a Γ-ring 𝑀  is 

said to be semiprime if for any ideal 𝑈 of 𝑀, 𝑈Γ𝑈 ⊆ 𝑃2 implies 𝑈 ⊆ 𝑃2. A Γ-ring 

𝑀 is said to be prime if 𝑎Γ𝑀Γ𝑏 = (0) with 𝑎, 𝑏 ∈ 𝑀, implies 𝑎 = 0 or 𝑏 = 0 and 

semiprime if 𝑎Γ𝑀Γ𝑎 = (0) with 𝑎 ∈ 𝑀 implies 𝑎 = 0. Furthermore, 𝑀 is said to 

be commutative Γ-ring if 𝑥𝛼𝑦 = 𝑦𝛼𝑥 for all 𝑥, 𝑦 ∈ 𝑀 and 𝛼 ∈ Γ. Moreover, the 

set 𝑍(𝑀) = {𝑥 ∈ 𝑀: 𝑥𝛼𝑦 = 𝑦𝛼𝑥 for all 𝑦 ∈ 𝑀 and 𝛼 ∈ Γ} is called the centre of 

the Γ-ring 𝑀 . If 𝑀  is a Γ-ring, then [𝑥, 𝑦]𝛼 = 𝑥𝛼𝑦 − 𝑦𝛼𝑥   is known as the 

commutator of 𝑥  and 𝑦 with respect to 𝛼, where 𝑥, 𝑦 ∈ 𝑀 and 𝛼 ∈ Γ. We make 

the basic commutator identities: 

 [𝑥𝛼𝑦, 𝑧]𝛽 = [𝑥, 𝑧]𝛽𝛼𝑦 + 𝑥𝛼[𝑦, 𝑧]𝛽  and  [𝑥, 𝑦𝛼𝑧]𝛽 = [𝑥, 𝑦]𝛽𝛼𝑧 + 𝑦𝛼[𝑥, 𝑧]𝛽  , for 

all 𝑥, 𝑦 ∈ 𝑀 and 𝛼 ∈ Γ. We consider the following assumption: 

𝑥𝛼𝑦𝛽𝑧 = 𝑥𝛽𝑦𝛼𝑧, for all 𝑥, 𝑦, 𝑧 ∈ 𝑀 and 𝛼, 𝛽 ∈ Γ. . . . . . . . . . . . . . . . . . (𝐴). 

An additive mapping 𝐷: 𝑀 → 𝑀  is called a derivation if 𝐷(𝑥𝛼𝑦) = 𝐷(𝑥)𝛼𝑦 +
𝑥𝛼𝐷(𝑦)  holds for all 𝑥, 𝑦 ∈ 𝑀  and 𝛼 ∈ Γ . An additive mapping 𝐷: 𝑀 → 𝑀  is 

called a Jordan derivation if 𝐷(𝑥𝛼𝑥) = 𝐷(𝑥)𝛼𝑥 + 𝑥𝛼𝐷(𝑥) holds for all 𝑥, 𝑦 ∈ 𝑀 

and 𝛼 ∈ Γ .  A mapping 𝑓  is said to be commuting on a left ideal 𝐽  of 𝑀  if 

[𝑓(𝑥), 𝑥]𝛼 = 0  for all 𝑥 ∈ 𝐽  and 𝛼 ∈ Γ  and 𝑓   is said to be centralizing if 

[𝑓(𝑥), 𝑥]𝛼 ∈ 𝑍(𝑀)for all 𝑥 ∈ 𝐽  and  𝛼 ∈ Γ . An additive mapping 𝑓: 𝑀 → 𝑀  is 

said to be a generalized derivation on 𝑀, if 𝑓(𝑥𝛼𝑦) = 𝑓(𝑥)𝛼𝑦 + 𝑥𝛼𝐷(𝑦) holds 

for all 𝑥, 𝑦 ∈ 𝑀 and 𝛼 ∈ Γ, where 𝐷 is a derivation on  𝑀.  An additive mapping 

𝑓: 𝑀 → 𝑀 is called a generalized Jordan derivation on 𝑀, if 𝑓(𝑥𝛼𝑥) = 𝑓(𝑥)𝛼𝑥 +
𝑥𝛼𝐷(𝑥) holds for all 𝑥 ∈ 𝑀 and 𝛼 ∈ Γ, where 𝐷 is a derivation on 𝑀. 

 

Preliminaries and main results 
 

We have to make some use of the following well-known results: 

 

Remark 1: Let 𝑀 be a prime Γ-ring. If 𝑎𝛼𝑏 ∈ 𝑍(𝑀) with 0 ≠ 𝑎 ∈ 𝑍(𝑀), then 

𝑏 ∈ 𝑍(𝑀). 
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Remark 2: Let 𝑀 be a prime Γ-ring and  𝐽 a nonzero left ideal of 𝑀. If 𝐷 is a 

nonzero derivation on 𝑀, then 𝐷 is also a nonzero on  𝐽. 

 

Remark 3: Let 𝑀  be a prime Γ-ring and  𝐽 a nonzero left ideal of 𝑀 . If  𝐽  is 

commutative, then 𝑀 is also commutative. 

 

Lemma 1: Suppose  𝑀  is a prime Γ -ring satisfying the assumption ( 𝐴)  and 

𝐷: 𝑀 → 𝑀 be a Jordan derivation. For an element 𝑎 ∈ 𝑀, if  𝑎𝛼𝐷(𝑥) = 0, for all 

𝑥 ∈ 𝑀 and  𝛼 ∈ Γ, then either 𝑎 = 0 or 𝐷 = 0. 

 

Proof: By our assumption, 𝑎𝛼𝐷(𝑥) = 0, for all 𝑥 ∈ 𝑀, and 𝛼 ∈  Γ. 

We replacing 𝑥 by 𝑥𝛽𝑥 in above equation then, we get 

 𝑎𝛼𝐷(𝑥𝛽𝑥) = 0 

 𝑎𝛼𝐷(𝑥)𝛽𝑥 + 𝑎𝛼𝑥𝛽𝐷(𝑥) = 0 

 𝑎𝛼𝑥𝛽𝐷(𝑥) = 0, for all 𝑥 ∈ 𝑀, and, 𝛼, 𝛽 ∈  Γ. 

If 𝐷 is nonzero, that is, if 𝐷(𝑥) ≠ 0, for some 𝑥 ∈ 𝑀. Then by definition of prime 

Γ-ring, 𝑎 = 0.  

 

Lemma 2: Suppose  𝑀 is a prime Γ-ring satisfying the assumption (𝐴) and 𝐽 a 

nonzero left ideal of 𝑀. If  𝑀 has a derivation 𝐷 which is zero on 𝐽, then 𝐷 is zero 

on 𝑀. 

 

Proof: By the hypothesis, 𝐷(𝐽) = 0. 

Replacing  𝐽  by 𝑀ΓJ in above equation then, we get 

 𝐷( 𝑀ΓJ) = 0 

 𝐷(𝑀)ΓJ + MΓD(J) = 0 

 𝐷(𝑀)ΓJ = 0. 

By lemma 1, 𝐷 must be zero, since 𝐽 is nonzero. 

Lemma 3 [7]: Suppose  𝑀 is a prime Γ-ring satisfying the assumption (𝐴) and 𝐽 a 

nonzero left ideal of 𝑀. If 𝐽 is commutative on 𝑀, then 𝑀 is commutative. 

 

Lemma 4: Suppose  𝑀 is a prime Γ-ring and 𝑓: 𝑀 → 𝑀 be an additive mapping. 

If 𝑓  is centralizing on a left ideal 𝐽  of  𝑀 , then 𝑓(𝑎) ∈ 𝑍(𝑀) , for all 𝑎 ∈ 𝐽 ∪
𝑍(𝑀). 

 

Proof: 𝑓 is   centralizing  on left ideal 𝐽 of 𝑀, we have 

 [𝑓(𝑎), 𝑎]𝛼 ∈ 𝑍(𝑀) for all 𝑎 ∈ 𝐽 and 𝛼 ∈ Γ. 
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By linearization, we have 

𝑎, 𝑏 ∈ 𝐽 ⟹ 𝑎 + 𝑏 ∈ 𝐽, for all 𝛼 ∈ Γ. 

 [𝑓(𝑎 + 𝑏), 𝑎 + 𝑏]𝛼 ∈ 𝑍(𝑀) 
 

𝑓 is an additive mapping then 

 [𝑓(𝑎) + 𝑓(𝑏), 𝑎 + 𝑏]𝛼 ∈ 𝑍(𝑀) 

 [𝑓(𝑎), 𝑎]𝛼 + [𝑓(𝑎), 𝑏]𝛼 + [𝑓(𝑏), 𝑎]𝛼 + [𝑓(𝑏), 𝑏]𝛼 ∈ 𝑍(𝑀) 

 

𝑓 is a centralizing on left ideal 𝐽 of 𝑀 then, we get 

[𝑓(𝑎), 𝑎]𝛼 = 0, [𝑓(𝑏), 𝑏]𝛼 = 0 

 [𝑓(𝑎), 𝑏]𝛼 + [𝑓(𝑏), 𝑎]𝛼 ∈ 𝑍(𝑀), for all 𝑎, 𝑏 ∈ 𝐽 and  𝛼 ∈ Γ .                             (1)                                                                                                                       

 

If 𝑎 ∈ 𝑍(𝑀), then equation (1) becomes 

[𝑓(𝑎), 𝑏]𝛼 ∈ 𝑍(𝑀). 

 

Replacing 𝑏 by 𝑓(𝑎)𝛽𝑏 in above equation then, we get 

 [𝑓(𝑎), 𝑓(𝑎)𝛽𝑏]𝛼 ∈ 𝑍(𝑀) 

 [𝑓(𝑎), 𝑓(𝑎)]𝛼𝛽𝑏 +  𝑓(𝑎)𝛽[𝑓(𝑎), 𝑏]𝛼 ∈ 𝑍(𝑀) 

 𝑓(𝑎)𝛽[𝑓(𝑎), 𝑏]𝛼 ∈ 𝑍(𝑀).  If  [𝑓(𝑎), 𝑏]𝛼 = 0. 

Then 𝑓(𝑎) ∈ 𝐶Γ𝑀(𝐽). 

 

The centralizer of 𝐽 in 𝑀 and hence𝑓(𝑎) ∈ 𝑍(𝑀). Otherwise, if [𝑓(𝑎), 𝑏]𝛼 ≠ 0, 

remark 1 follows that 𝑓(𝑎) ∈ 𝑍(𝑀). Hence the lemma. 

 

Theorem 1:  Let  𝑀 be a prime  Γ-ring satisfying the assumption (𝐴) and 𝐷 is a 

nonzero derivation on 𝑀. If 𝑓 is a generalized Jordan derivation on a left ideal  𝐽 

of 𝑀 such that 𝑓 is commuting on 𝐽, then 𝑀 is commutative. 

 

Proof: Since 𝑓 is commuting on 𝐽, we have 

  [𝑓(𝑎), 𝑎]𝛼 = 0, for all 𝑎 ∈ 𝐽 and 𝛼 ∈ Γ. 

Replacing  𝑎 by 𝑎 + 𝑏 in above equation, we get 

 

 [𝑓(𝑎 + 𝑏), 𝑎 + 𝑏]𝛼 = 0 

 [𝑓(𝑎) + 𝑓(𝑏), 𝑎 + 𝑏]𝛼 = 0 

 [𝑓(𝑎), 𝑎]𝛼 +  [𝑓(𝑎), 𝑏]𝛼 +  [𝑓(𝑏), 𝑎]𝛼 +  [𝑓(𝑏), 𝑏]𝛼 = 0 
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 [𝑓(𝑎), 𝑏]𝛼 +  [𝑓(𝑏), 𝑎]𝛼 = 0                                                                                (2) 

Replacing 𝑏 by 𝑎𝛽𝑎 in equation (2), we get 

 [𝑓(𝑎), 𝑎𝛽𝑎]𝛼 +  [𝑓(𝑎𝛽𝑎), 𝑎]𝛼 = 0 

 [𝑓(𝑎), 𝑎]𝛼𝛽𝑎 + 𝑎𝛽 [𝑓(𝑎), 𝑎]𝛼 + [𝑓(𝑎)𝛽𝑎 + 𝑎𝛽𝐷(𝑎), 𝑎]𝛼 = 0 

 [𝑓(𝑎), 𝑎]𝛼𝛽𝑎 + 𝑎𝛽 [𝑓(𝑎), 𝑎]𝛼 +  [𝑓(𝑎)𝛽𝑎, 𝑎]𝛼 +  [𝑎𝛽𝐷(𝑎), 𝑎]𝛼 = 0 

[𝑓(𝑎), 𝑎]𝛼𝛽𝑎 + 𝑎𝛽 [𝑓(𝑎), 𝑎]𝛼 + 𝑓(𝑎)𝛽[𝑎, 𝑎]𝛼 +  [𝑓(𝑎), 𝑎]𝛼βa +
 [𝑎β𝐷(𝑎), 𝑎]𝛼 = 0  

𝑓 is centralizer, then [𝑓(𝑎), 𝑎]𝛼𝛽𝑎 = 0, 𝑎𝛽 [𝑓(𝑎), 𝑎]𝛼 = 0, [𝑓(𝑎), 𝑎]𝛼βa =
0, 𝑓(𝑎)𝛽[𝑎, 𝑎]𝛼 = 0. 

[𝑎β𝐷(𝑎), 𝑎]𝛼 = 0                                                                                                  (3) 

 

Replacing 𝑎𝛽 by 𝑏𝛽 in equation (3), we get 

 

[𝑏β𝐷(𝑎), 𝑎]𝛼 = 0   

 

Replacing 𝑏 by 𝑟𝛾𝑎 in above equation, then we get 

 

[𝑟𝛾𝑎β𝐷(𝑎), 𝑎]𝛼 = 0   

𝑟𝛾𝑎β [𝐷(𝑎), 𝑎]𝛼 + [𝑟𝛾𝑎, 𝑎]𝛼𝛽𝐷(𝑎) = 0 

 𝑟𝛾𝑎β [𝐷(𝑎), 𝑎]𝛼 + 𝑟𝛾 [𝑎, 𝑎]𝛼𝛽𝐷(𝑎) + [𝑟, 𝑎]𝛼𝛾𝑎β D(a) = 0 

 [𝑟, 𝑎]𝛼𝛾𝑎β D(a) = 0, for all 𝑎 ∈ 𝐽, 𝑟 ∈ 𝑀 and 𝛼, 𝛽, 𝛾, ∈ Γ. 

Since 𝑀 is prime Γ-ring, thus  [𝑟, 𝑎]𝛼 = 0 or 𝐷(𝑎) = 0 

 

Since  𝐷 is nonzero derivation on 𝑀, then by lemma 2, 𝐷 is nonzero on  𝐽. 

 

Suppose 𝐷(𝑎) ≠ 0 for some 𝑎 ∈ 𝐽, then 𝑎 ∈ 𝑍(𝑀). 

 

Let 𝑐 ∈ 𝐽   with  𝑐 ≠ 𝑍(𝑀) . Then 𝐷(𝑐) = 0  and 𝑎 + 𝑐 ∉ 𝑍(𝑀) , that is, 𝐷(𝑎 +
𝑐) = 0 and so 𝐷(𝑎) = 0, which is a contradiction. Thus 𝑐 ∈ 𝑍(𝑀) for all 𝑐 ∈ 𝐽. 

Hence 𝐽 is commutative and  lemma3, we get 𝑀 is commutative.  

 

Theorem 2: Let  𝑀 be a prime Γ-ring satisfying the assumption (𝐴)  and 𝐽 a left 

ideal of 𝑀 with 𝐽 ∩ 𝑍(𝑀) ≠ 0. If 𝑓 is a generalized Jordan derivation on 𝑀 with 

associated nonzero derivation 𝐷  such that 𝑓  is commuting on 𝐽 , then 𝑀  is 

commutative. 
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Proof: we claim that, 𝑍(𝑀) ≠ 0 because of 𝑓 is commuting on 𝐽 and the proof is 

complete.  

 

Now from equation (1), we get 

 

 [𝑓(𝑎), 𝑏]𝛼 + [𝑓(𝑏), 𝑎]𝛼 ∈ 𝑍(𝑀) 

We replace 𝑎 by 𝑐𝛽𝑐 with 0 ≠ 𝑐 ∈ 𝑍(𝑀), we get 

 [𝑓(𝑐𝛽𝑐), 𝑏]𝛼 + [𝑓(𝑏), 𝑐𝛽𝑐]𝛼 ∈ 𝑍(𝑀) 

 [𝑓(𝑐)𝛽𝑐 + 𝑐𝛽𝐷(𝑐), 𝑏]𝛼 +  [𝑓(𝑏), 𝑐]𝛼𝛽𝑐 +  cβ[𝑓(𝑏), 𝑐]𝛼 ∈ 𝑍(𝑀) 

 [𝑓(𝑐)𝛽𝑐, 𝑏]𝛼 +  [𝑐𝛽𝐷(𝑐), 𝑏]𝛼 + [𝑓(𝑏), 𝑐]𝛼𝛽𝑐 + cβ[𝑓(𝑏), 𝑐]𝛼 ∈ 𝑍(𝑀) 

𝑓(𝑐)𝛽[𝑐, 𝑏]𝛼 + [𝑓(𝑐), 𝑏]𝛼𝛽𝑐 +  c𝛽[𝐷(𝑐), 𝑏]𝛼 + [𝑐, 𝑏]𝛼𝛽𝐷(𝑐) + [𝑓(𝑏), 𝑐]𝛼𝛽𝑐
+ 𝑐𝛽 [𝑓(𝑏), 𝑐]𝛼 

 ∈ 𝑍(𝑀) 

𝑐 ∈ 𝑍(𝑀) ⟹  [𝑐, 𝑏]𝛼 = 0, for all 𝑏 ∈ 𝐽. 

Since  𝑐 ∈ 𝑍(𝑀)  ⟹ 𝑓 is a centralizer on 𝐽. 

 𝑓(𝑏) ∈ 𝑍(𝑀) ⟹ [𝑓(𝑏), 𝑐]𝛼 = 0. 

 [𝑓(𝑐), 𝑏]𝛼𝛽𝑐 +  c𝛽[𝐷(𝑐), 𝑏]𝛼 ∈ 𝑍(𝑀) 

From lemma 1, 𝑓(𝑐) ∈ 𝑍(𝑀) and hence c𝛽[𝐷(𝑐), 𝑏]𝛼 ∈ 𝑍(𝑀).  

 

Replacing 𝑏 by 𝑏 + 𝑐 in above equation, we get 

 

c𝛽[𝐷(𝑐), 𝑏 + 𝑐]𝛼 ∈ 𝑍(𝑀). 

c𝛽[𝐷(𝑐), 𝑏]𝛼 + c𝛽[𝐷(𝑐), 𝑐]𝛼 ∈ 𝑍(𝑀).  

And consequently c𝛽[𝐷(𝑐), 𝑐]𝛼 ∈ 𝑍(𝑀). 

 

As 𝑐  is nonzero, remark 1 follows that  [𝐷(𝑐), 𝑐]𝛼 ∈ 𝑍(𝑀) . This implies 𝐷  is 

centralizing on 𝐽 and hence we conclude that  𝑀 is commutative. 
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